

Necesidad de incorporar inercia al SIN

Nicolás Yedrzejewski

Demanda y potencias instaladas actualmente

- **2016**
 - Uruguay
 - Pico demanda: 2000 MW

 - Demanda mínima: 800 MW aprox.
 Gen Eólica instalada: 1100 MW aprox.
 - Gen Solar instalada: 80 MW aprox.
 - Argentina
 - Pico demanda: 25000 MW
 - Demanda mínima: 12000 MW aprox.
 - Gen Eólica instalada: 200 MW aprox.
 - Gen Solar instalada: 8 MW aprox.
- - **Uruguay**
 - Gen Éólica instalada: 1500 MW aprox.
 - Gen Solar instalada: 200 MW aprox.
 - Microgeneracion: ???
 - **Argentina**
 - Gen Eólica instalada: ??? (Potencial muy grande)
 Gen Solar instalada: ???

Descripción. Objetivos Generales

- Escenario del problema

 Despacho energético en presencia de mucha generación sin inercia en el sistema interconectado SIN-SADI

Planteo del problema

 Incertidumbre sobre los niveles mínimos de inercia que debería tener el sistema interconectado SIN-SADI.

Objetivo general

- Conocer los requerimientos mínimos de inercia del sistema
- Evaluar cómo lograrlos sin forzar el despacho de centrales convencionales

Expectativas: resultados esperados

- Requerimientos mínimos de inercia del sistema
- Evaluar distintas tecnologías
 - Tipos
 - Costos
 - Instalación
 - Operación
 - Mantenimiento
 - Aporte de inercia
 - Lugar de instalación
 - Tendencias en el mediano y largo plazo

Impacto en la Gestión de UTE

 Evitar despachos forzados de generación que aporte inercia, la cual puede ser almacenada para ser utilizada en otras horas sustituyendo generación más cara o para exportarla.

Nicolás Yedrzejewski

